HOLOGRAPY THE INNOVATION IN TECHNOLOGY
WHAT IS HOLOGRAPY?????
In its pure form, holography requires the use of laser light for illuminating the subject and for viewing the finished hologram. In a side-by-side comparison under optimal conditions, a holographic image is visually indistinguishable from the actual subject, if the hologram and the subject are lit just as they were at the time of recording. A microscopic level of detail throughout the recorded volume of space can be reproduced. In common practice, however, major image quality compromises are made to eliminate the need for laser illumination when viewing the hologram, and sometimes, to the extent possible, also when making it. Holographic portraiture often resorts to a non-holographic intermediate imaging procedure, to avoid the hazardous high-powered pulsed lasers otherwise needed to optically "freeze" living subjects as perfectly as the extremely motion-intolerant holographic recording process requires. Holograms can now also be entirely computer-generated and show objects or scenes that never existed.
Holography should not be confused with lenticular and other earlier autostereoscopic 3D display technologies, which can produce superficially similar results but are based on conventional lens imaging. Stage illusions such as Pepper's Ghost and other unusual, baffling, or seemingly magical images are also often incorrectly called holograms.
HISTORY
Gabor's first paper on holography evoked immediate response from scientists worldwide. Among those who made important contributions to the development of the technique were G.L. Rogers, A.B. Baez, H. El-Sum, P. Kirkpatrick and M.E. Haine. In these early years, the mercury arc lamp was the most coherent light source available for making holograms. Because of the low coherency of this light, it was not possible to produce holograms of any depth, thus restricting research. Despite equipment limitations, these researchers identified many of the properties of holography and further elaborated on Gabor's theory. Most important, they extended their understanding of the process and its potential to another generation of scientists.
Gabor's holography was limited to film transparencies using a mercury arc lamp as the light source. His holograms contained distortions and an extraneous twin image. Further development in the field was stymied during the next decade because light sources available at the time were not truly "coherent" (monochromatic or one-color, from a single point, and of a single wavelength).
WORKING OF THE HOLOGRAM
Holography is a technique that enables a light field, which is generally the product of a light source scattered off objects, to be recorded and later reconstructed when the original light field is no longer present, due to the absence of the original objects.[24] Holography can be thought of as somewhat similar to sound recording, whereby a sound field created by vibrating matter like musical instruments or vocal cords, is encoded in such a way that it can be reproduced later, without the presence of the original vibrating matter.
Laser
In laser holography, the hologram is recorded using a flash of laser light that illuminates a scene and then imprints on a recording medium, much in the way a photograph is recorded. In addition, however, part of the light beam must be shone directly onto the recording medium - this second light beam is known as thereference beam. A hologram requires a laser as the sole light source. Lasers can be precisely controlled and have a fixed wavelength, unlike sunlight or light from conventional sources, which contain many different wavelengths. To prevent external light from interfering, holograms are usually taken in darkness, or in low level light of a different color from the laser light used in making the hologram. Holography requires a specific exposure time (just like photography), which can be controlled using a shutter, or by electronically timing the laser.
Apparatus
A hologram can be made by shining part of the light beam directly into the recording medium, and the other part onto the object in such a way that some of the scattered light falls onto the recording medium.
A more flexible arrangement for recording a hologram requires the laser beam to be aimed through a series of elements that change it in different ways. The first element is a beam splitter that divides the beam into two identical beams, each aimed in different directions:
- One beam (known as the illumination or object beam) is spread using lenses and directed onto the scene using mirrors. Some of the light scattered (reflected) from the scene then falls onto the recording medium.
- The second beam (known as the reference beam) is also spread through the use of lenses, but is directed so that it doesn't come in contact with the scene, and instead travels directly onto the recording medium.
Several different materials can be used as the recording medium. One of the most common is a film very similar tophotographic film (silver halide photographic emulsion), but with a much higher concentration of light-reactive grains, making it capable of the much higher resolution that holograms require. A layer of this recording medium (e.g., silver halide) is attached to a transparent substrate, which is commonly glass, but may also be plastic.
Process
When the two laser beams reach the recording medium, their light waves intersect and interfere with each other. It is this interference pattern that is imprinted on the recording medium. The pattern itself is seemingly random, as it represents the way in which the scene's light interfered with the original light source — but not the original light source itself. The interference pattern can be considered an encoded version of the scene, requiring a particular key — the original light source — in order to view its contents.
This missing key is provided later by shining a laser, identical to the one used to record the hologram, onto the developed film. When this beam illuminates the hologram, it is diffracted by the hologram's surface pattern. This produces a light field identical to the one originally produced by the scene and scattered onto the hologram.
No comments:
Post a Comment